

Requirements Engineering

● Goal
● Understand the importance to identify requirements
● Learn that requirements are documented as result of the

process named requirement engineering

● Contents
● Software lifecycle
● Definitions & roles
● Requirement life cycle
● Requirement properties
● Best practices
● Overview diagrams & charts for documentation

Product Lifecycle

● Strategy & Conception
● Development
● Market-Entrance
● Evolution / Maintenance
● End of Life (no further support)

Definitions

● Requirement
● Def: a value to be offered by the system
● Analytical Specification

– Functional Req. describe the functions “What”
– Non-functional Requ. Deals with how the system operates (answer-time,

load-capacity, up-time) instead of how it behaves
● Technical Specification

– Technical Req. describe the technical implementation “How”

● Requirements Engineering
● Def: covers activities involved in discovering, documenting and

maintaining a set of requirements
● Very intense & complete in V-Modell / Wasserfall-Modell
● Approximatively for small set of functionality in agile Development

Roles dealing with requirements

● Product Manager
● Project Manager
● Customer
● Tester
● End-User
● Developer
● UX-Designer / Designer
● Requirements-Engineer / Analyst

Requirement life cycle

1. Identify requirements coming from
● Market research
● Customer Interviews
● Retailer, Partner, Sales, Marketing
● Customer-Study

2. document requirements as analytical specification
“WHAT” (Lastenheft)

● Documentation as high level user stories
● Iterative collection using prototyping, simulation, concepts &

testing
● Modeling and analysis using images & charts

Requirement life cycle

3. Requirements evaluation
● Evaluate / sort requirement wrt to “Does it add any

business value”
● Compare with standards
● Resolve contradictory requirements

4. Requirement Analysis as technical specification
document “HOW” (Pflichtenheft)

● Dependencies and technical details
● Specify system boundaries

5. Requirements are implemented in software

6. software is tested against documented requirements

Attributes of requirements

● Complete
● Correct (to the actual knowledge)
● Consistent
● Testable
● Understandable
● Necessary
● Non-ambiguous
● Realizable

Requirement Pattern

● Number, Titel, Status, Priority, Stakeholder
● Description, Limitations
● References,

Influences,
Dependencies

● Cost / effort
● Acceptance test
● Comments from team

members
http://www.hausarbeiten.de/faecher/vorschau/135430.html

Critics from the view of Agile Dev

● An idea that has never been implemented
before is hard to describe in its completeness

● A 100+ pages requirements document cannot
be consumed easily and is hard to understand
in its whole

● Many ideas are not realizable in its specified
form, only prototypes can proof that

Cost of inadequate requirements

True in both system:
● upfront-design (100% requirements are described before testing)
● Agile methods (requirements are discovered iteratively, 5% per iteration)

From book: Steve McConnell, Code Complete: A Practical Handbook of
Software Construction, 2004.

Best practices

● Glass' law: Requirement deficiencies are the prime source of
project failures.

● Boehm's first law: Errors are most frequent during the
requirements and design activities and are the more expensive
the later they are removed.

● Boehm's second law: Prototyping (significantly) reduces
requirement and design errors, especially for user interfaces.

Glass' law: Glass, R.L.: Software Runaways. Lessons Learned from Massive Software Project Failures. Upper Saddle River, NJ:
Prentice Hall 1998.

Boehm's first law: Boehm, B.W., McClean, R.K., Urfrig, D.B.: Some Experience with Automated Aids to the Design of Large-Scale
Reliable Software. IEEE Trans on Software Engineering 1, 1 (1975), 125–133.

Boehm's second law: Boehm, B.W., Gray, T.E., Seewaldt, T.: Prototyping Versus Specifying: A Multiproject Experiment. IEEE Trans on
Software Engineering 10, 3 (1984), 290–302

Best practices

● Requirements are not stable, use of change
management recommended

● Intense and long-during analysis leads to
paralysis at the cost of the realization phase

● Use short term contracts (less fuction in less
time) over long term contracts (all functions with
behavior testing after years)

Charts in Requirement Analysis

Structure Behavior

Analytical Specification
(Lastenheft)

 Analytical Class-
 Object-
 Packet-

 User Story
 Use-Case-
 Activity-

Technical Specification
(Pflichtenheft)

 Technical Class-
 Components-
 Distribution-

 State-
 Sequence-
 Communication-
 Interaction-

Above assignment are not that strict, take what best suits your needs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

