

Sequence Diagrams

Modeling behavior

Motivation

● Definition: shows how processes operate with
one another and in what order

● Used in: technical specification on the level of
class-objects
● To describe the realization of a use case

● Have less details than code
● Can be created by non-developers
● Provide parallel inspection of objects

(visualization)

Tobias
Hinweis
how objects cummunicate

Tobias
Hinweis
and order of communication

How they work

ObjectName:classObjectName:class ObjectName:class

An Object and its life-line
(instantiated, consumes
memory)

An Object and its life-line
(instantiated, consumes
memory)

The object is active either
Processing or waiting for
something

ObjectName:class

The object is active either
Processing or waiting for
something

ObjectName:class

The object sends a message
And receives a return value

method(input):output

Focus of control

The „message“ is a methods
 that is called or just a message
Of the output is written behind the call,
a return arrow can be spared

Tobias
Hinweis
Kommunication

Tobias
Pfeil

Modeling Tasks

● Model a behavior and present it
● A packet is shipped from Mannheim to New York

– Delivery using postal office, regional repository, airport
● A round of texal holdem poker

– Cards are issued, Bets were set & showdown
● Order a product from a webshop

– Search,checkout, declare shipping details

Tobias
Hinweis
Akteure:
user, shop, warenkorb, lager

weitere Instanzen:
Produkt

methoden von Shop:
suche(String filter...):Liste Produkt

methoden von Warenkorb:
add(p: Product):bool
pay(m:money):bool

methoden von Lager:
availlabel(p:Product):bool
ship(p:Product):bool

methoden von User:
receive(p:Product):Empfangsschein

Tobias
Hinweis
introductory examples:
handelnde objekte: user, mülltonne,müllauto, müllmann

übergebene Objekte: müll

Benefits

● Helps to analyze communication infrastructure
● Memory waste
● Failure tolerance
● System stability
● Ease of use

Asynchronous VS Synchronous

one single action between send and receive multiple actions between send & receive

object1:class object2:class

message()

Return value

Synchronous call: the called objects cannot
deliver immediately, object1 "blocks" until
object2 returns

Synchronous call: the called objects cannot
deliver immediately, object1 "blocks" until
object2 returns

Asynchronous call: the called object is not
waiting for the return value, but does something
Else or goes "sleeping" until the answer returns

object1:class object2:class

message()

Return value

message()

Communication Architecture

:class:class :class :class :class

Centralized / cascading

:class:class :class :class :class

Distributed, client/ Server

Creation & Destruction

:class

Create

:class

:class

:class

Destroy

:class :class

Task shared ressource

● What is problematic
with the left
communication

● Suggest solutions to
this problem as
sequence diagram

:class

read():val

a:Agent b:Agent

read():val

:Ressource

write():val

write():val

Tobias
Rechteck

Tobias
Linie

Tobias
Linie

Tobias
Stift

Tobias
Stift

Task GUI Client-Server

● What is problematic with this approach
● Again make suggestions to improve usability /

functionality

showButton

:GUI :Client :Server

showDir():files

updateGUI

selectUpload upload(file)
upload():bool

upload():bool

upload():bool
finishedupdateGUI

Task Videostreaming

● Is that approach good
for
● Rights control (DRM)
● Distribution speed &

broadcasting
● Reliability and

availability

● In case its not, make
suggestions

get(posotion_seconds) returns a sequence of 10 seconds
from passed time pointer

:class

get(0s):sequence

:Client :Client :VideoServer

get(10s):sequence

get(20s):sequence

get(0s):sequence

get(10s):sequence

Conditionals & loops

http://www.cs.washington.edu/education/courses/cse403/11sp/lectures/lecture09-uml2.pdf by Michael Ernst

http://www.cs.washington.edu/education/courses/cse403/11sp/lectures/lecture09-uml2.pdf

Task

Create a Sequence diagram of your game's
most challenging Use Case

● Identify required class-objects
● Model the interaction between those objects

and describe their "communcation"

Tobias
Hinweis
besserer Vorschlag:

Mobile-App Zugriff auf externe Ressourcen (Twitter, Fotos, Sparkassen-App)

-> OAuth 2.0- User Authorization Grant

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

